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Model calculations with the equation of state theories of Prigogine and Simha et al. were performed to investigate 
the influence of the lattice site size on the predicted thermodynamic properties. In these theories, as well as in 
some other equation of state theories, this quantity can be chosen arbitrarily, but it turns out that some properties of 
the theories depend appreciably on that choice. The theory of Simha et al. contains an equilibrium condition which 
serves to determine the fraction of occupied lattice sites. This condition contains the quantity 3c/r, where 3c is the 
number of degrees of freedom per chain, and r the number of segments per chain. It is common practice to set this 
quantity equal to unity, thus fixing the lattice site size. In the present work, it is also investigated how different 
choices for the lattice site size alter the description of pressure-volume-temperature (PVT) data of polymers. It 
turns out that for the theory of Simha et al., the reduction parameters of the polymers strongly depend on this 
choice, but the description of PVT behaviour and the prediction of free volume is almost independent of this 
choice. The prediction of phase behaviour of binary blends, however, can completely change when different 
choices for this quantity are made. It turns out that this change occurs in a way very similar to that of the Prigogine 
theory, in spite O f the fact that the reduction parameters of the latter do not change. It seems that only the ratio of 
the lattice site volumes is important, not, however, their absolute size. © 1997 Elsevier Science Ltd. 

( K e y w o r d s :  cel l  model equation-of-state theories; lattice site size; polymer mixtures) 

INTRODUCTION 

When working with the cell model theories which are based 
on the Hirschfelder-Eyring ~ partition function, one is 
dealing with the problem of how to fix the size of  a lattice 
site. Usually, in the theories which are applied mostly 

2 nowadays (i.e. the theory o f  Flory et al. , the modified cell 
model of  Dee and Walsh 3'4, and also in the lattice fluid theory 
of  Sanchez and Lacombe s'6 (SL)), for the sake of  simplicity 
the hard core volume for multi-component systems is chosen 
to be the same for all components. (In SL theory the sizes are 
usually different for the pure components, but a simple 
mixing rule is applied to have the same lattice site size for 
both components in the mixture.) If  certain rules are obeyed, 
in these cell models the descriptions or predictions of the 
thermodynamic behaviour of  polymer blends do not depend 
on this choice. Moreover, the equation of state (EOS) and its 
parameters do not depend on this choice either. 

In the case of the cell model of  Prigogine 7 and the 
8 10 Simha-Somcynsky - (SS) theory, a mixing rule is applied 

to determine the hard-core volume v of  a lattme site of  the 
mixture from those of the pure components. This mixing 
rule is derived from the use of  a 6-12 Lennard-Jones 
potential and at the same time serves to determine the 
average interaction energy e* between the chain segments. 
It is given by the following two equations: 

* *2 . , 2  * . 2 - - , . ,  . . . .  * *2 , , 2  * *2 
g V = A I ~ ' I I V I 1  -PZAIA2~I2VI2-'}-A2~,22V22 

* *4 . . 2  * , 4 - - ~  . . . .  * *4 .t.2 * *4 
8 V = A I S I I V l l  - ' I - ' Z A I A 2 8 1 2 V 1 2  " 4 - A 2 8 2 2 V 2 2  (1) 

* To  w h o m  c o r r e s p o n d e n c e  should  be  addressed .  

where e 0 is the interacti.on energy between chain segments 
of  component i and j, vii =,v(  is the hard-core volume of a 
segment of component i, v12 is an average of  the two pure 
components '  segmental hard-core volume and the Xi are site 
fractions of  component i. 

This mixing rule does not tell one, however, how to fix 
the lattice sites of the pure components• When all the v 0 are 
equal, however (e.g. by simply fixing them, or by first 
averaging the v~ for the mixture - -  depending on the theory 
under consideration), the two equations coincide and a 
simple mixing rule is obtained. It was already shown before 
that, in this case, the cell model theories and the SL and SS 
theories give very similar results ~ J-13. In the present work, 
we want to show that by choosing the size of the lattice sites 
in the same way for SS and Prigogine theory, both theories 
give similar results as well. In the following, we will see 
how different choices of  segment size alter the reduction 
parameters, the predicted number of  degrees of freedom in 
SS theory and the prediction of phase behaviour (spinodal) 
of  binary polymer blends for both theories. 

THEORY 

The Helmholtz free energy F of  the EOS theory of Prigogine 
is given by7: 

F 

N 
- - -  - ckT[ ln  v* + 3 ln(~ 1/3 - 2 -  1/6)] 

q z e * [  1.011 2.409] 
-~- ~ -  ~4 I~ 2 ] (2) 
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From equation (2) the following EOS can be derived 

/~ ~1/3 2 [1.011 ] 
~- -- ~1/3 _ 2-1/6 4- ~'~2 L ~2 - -  1.2045 (3) 

which is independent of the size of the lattice site. In equations 
(2) and (3), N is the number of polymer chains, 3c is the 
number of degrees of freedom per chain, ~ = v~p/vsp is the 
reduced volume (vsp and V sp are specific volume and specific 
hard-core volume respectively)/5 =p/p* and ]" = T/T* are 
reduced pressure and temperature, p* and T* are reduction 
pressure and reduction temperature, respectively. They are 
defined by 

p , =  qze T*= qze 
rv* ck (4) 

Since equation (3) is independent of v *, these reduction 
* V* parameters as well as Vsp do not depend on either. This 

means that the same is true for the hard-core volume Mvsp = 
rv per chain (M = mass per chain, r = number of segments 
per chain). For c the following relation holds 

p*Fv* 
c - (5) 

kT* 

hence c is also independent of the chosen size of v*. 
Therefore, upon changing v ,  the quantities r, qz = r(z - 
2) + 2 (z = coordination number, a value ofz  = 12 will be 
used) and e* change correspondingly to keep the reduction 
parameters constant. 

In the term containing the potential energy in equation 
(2), qz is used to sum over all contributions from one chain. 
This is to take account of the end effects, and is only 
important for very short chains. If this end effect is 
neglected and instead of qz one uses simply r(z - 2), e 
would be directly proportional to v* (the same is true for the 
theory of Flory et al. and the theory of Dee and Walsh, 
where rs is used, s being a measure of molecular surface). 
For sufficiently long chains, however, the difference 
between qz and r(z - 2) is very small. It can, however, be 
seen that the potential energy expression is independent of 
the choice of lattice site size. However, due to the term In v ,  
the free energy expression depends on that choice (Since 
most thermodynamic quantities are derived from F by 
differentiation, this usually does not matter). 

The foundations of SS theory are similar to those of the 
Prigogine theory. The lattice includes however also vacant 
sites. The Helmholtz free energy is then given by s-l° 

NF=rkT[ ( 1 -  y) ln(1-  y) + lln r 

-ckT[ln v* q- 3 ln((yv) 1/3- 2 -  l/6y)] 

~ [  1.011 2.409] 
-F (y#)4 (y-y~J 

(6) 

and leads to the following EOS, consisting of two 
equations 

--  2y [ 1.011 ] PV=T [ 1 -  2-l/6y(yfi)-1/3]- 1 ..~_ ~ { ~ - - - 1 . 2 0 4 5  

(7) 

~cr [ r - 1  ] 2-1/6y(yv)-l/3-- ½--~-z176yy~-~--q/~ + l l n ( 1 - y )  - 
r y 1 

_Y ~ [2 .409-  3.033] 
6T(y~)" L -~-~/- -  0 (8) 

where y is the fraction of occupied lattice sites. It can be seen 
that the first term of equation (6) (due to the combinatorial 
energy) depends on the size of the lattice sites, for the free 
volume term and the potential energy term the same holds as 
in Prigogine theory. Also the reduction parameters are 
defined in the same way (equation (4)). Moreover, for c 
the same relation (equation (5)) as in Prigogine theory 
holds. 

As mentioned above, when using the EOS of this theory, 
one is dealing with two equations. One is the actual EOS 
(equation (7)), which also depends on y, the fraction of 
occupied lattice sites. To obtain y, an additional equation 
(equation (8)) is required. This is obtained by the condition 
that in thermodynamic equilibrium y will adjust itself so as 
to minimise the free energy. 

This equilibrium condition (equation (8)), however, 
depends not only on the reduced variables of state, but 
also on the number of segments per chain r and the quantity 
3c/r where 3c is the number of degrees of freedom per chain. 
These quantities are in general different for different 
polymers, therefore, this EOS generally does not satisfy a 
principle of corresponding states. However, it is common 
practice to set the quantity 3c/r equal to one. Moreover, for 
polymers of sufficiently long chain lengths, the correspond- 
ing term (first term in first bracket on the 1.h.s. of equation 
(8)) in the equilibrium condition is equal to unity. In this 
case, the EOS obeys a principle of corresponding states. 
This means that there is a unique functional relationship f 
between the reduced variables of state, i.e. tip, ~, ]') = 0. 
The reduction parameters for different substances obtained 
in this way, show similar tendencies as those found for other 
EOS theories. This means, for example, that for all these 
theories p depends in a similar way on the expansion 
coefficient and compressibility, and T* depends in a similar 
way on the expansion coefficient and is independent of 
compressibility. Similarly the quantity r = 1 - T~/T~ 
defined by Patterson 14 gives information about free volume 
differences of two polymers. 

By fixing the quantity 3c/r, v*, the hard-core volume of a 
chain segment and thus the size of the segment itself is fixed 
as well. This means that, in contrast to other cell model 
theories, it cannot be chosen arbitrarily. When choosing 3c/ 
r = l, this chain segment is in general much smaller than a 
monomer unit. However, instead of fixing 3c/r, we can 
assign a certain value to v* and substitute a corresponding 
expression for 3c/r (via equation (5)). Then, however, the 
equilibrium condition will generally be different for 
different substances, implying that the functional 
relationship between the reduced variables of state is also 
different. This essentially means that they obey different 
EOSs. 

For other EOS theories where the segment size can be 
chosen arbitrarily, the choice of v* does not influence the EOS 
or the reduction parameters. For SS theory, however, it is 
expected that this choice influences the values of the reduction 
parameters. From equation (5) it can be seen that c should be 
independent of the size of the lattice site. For SS theory it 
turns out, however, due to the dependence of the reduc- 
tion parameters on the lattice site size, that this is not the 
case. 
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To deal with mixtures, we need the free energy of mixing. 
For the Prigogine theory it is given by 

AF 
~-=kT[x l ln  ¢bj +x21n q~2] 

(V[/3 -- 2 -  I_N) ] 
+kT x,c, l n v + 3 1 n ~ - - r g  3 

_ ~ [  1.011 2.409] xlq,Ze~[I.Oll 2.4__09] 
÷ ~4 ~ J 2 >4 92 j 

.2 z8; r 1.011 2.409] 
2 L ~4 ~7 J (9) 

where xi = Ni/N (N = NI + N2) is the mole fraction of 
component i, qz is calculated from qz = r(z - 2) + 2 
where r is calculated from the condition that the hard-core 
volume of the mixture is equal to the sum of the hard-core 
volumes of the components. 

rNv* = rlNl v I + r2N2v 2 (10) 

By using the definition for r which is usually applied (r = 
xlr 1 ÷ x2r2), the hard-core volume is not conserved upon 
mixing, unless vl = v2. The cbi are the hard-core volume 
fractions defined by 

riNiv i 
~bi= (11) 

rlNlV~ + r2N2v~ 

(it should be noted that the ri are the number of segments per 
chain in the pure state, in the mixture it is given by rive~v*. 
This means that q'i defined by equation (11) and expressed 
via quantities of the mixtures reduces to the usual expres- 
sion which is used to calculate the combinatorial entropy). 

It can be seen that for v~ = v2 the free energy of mixing is 
indeed independent of the size of v~. (Apart from the factor 
qz8 , which due to the non-proportionality between 8 and 
v , depends on that choice. Again, however, for sufficiently 
long chains this can be neglected.) For the case of v~ ¢ v; 
only the ratio v~/v; is important, not, however, the absolute 
values of the v7 (again for sufficiently long chains). 

The free energy of mixing of SS theory is given by 

AF kT[xlln rb, +x21n~ 2 + r ( 1 - Y ) l n ( l - y ) + l n y ]  
N y 

- x l k T [  rl(lyl- yl)ln(1 - y l ) ÷ l n y l l  

-- x2kT[L r2(1---Y2 y2)ln(1 - Y2)÷ In Y2] 

Pl • f ((YlVl) -- 2 Yl)'~ +x, ,kr lnT+ 3,n , ) 

+x2c2kT[lnV~_2,+31n{ ((Y2v2)l /3-2-1/6y2)~] 

yqze*[1.Oll 2.409] x,ylqlZ8*l[ 1.011 
÷ T (y~)4 ~ j  2 [(YlOl) 4 

2.409 x2Y2q2zs~[ 1.011 2.409 ] 
-- (ylOl)2 ] 2 t (y2v2) 4 (y2v2)2J 

(12) 

Even if both vi are chosen to be equal (v~ = v2)  , the free 
energy of mixing equation (12) depends on the size of the vi. 
This is due to the terms stemming from the combinatorial 
entropy of mixing holes and chain segments (the logarith- 
mic terms containing (1 - y)). 

From the expressions for the free energy of mixing, 
&F (equations (9) and (12) respectively), the spinodal 
can be calculated by a numerical procedure described 
previously13. 

For discussing the miscibility of polymer blends, it is very, 
popular to use the Flory-Huggins X parameter. When the vi 
in the mixing rule equation (1) are set equal, one can derive 
an expression for the X parameter from the EOS theories by 
simply equating the residual free energy of the Flory- 
Huggins theory (i.e. without the combinatorial entropy) and 
the corresponding EOS theory. For the general case v~ ~ v; 
this is not as simple. 

However, Patterson and Delmas derived an approxi- 
mate expression by series expansion of the residual free 
energy of mixing ~s. It is predicted by this expression that 
different sizes of the lattice sites give an additional 
contribution to X- 

- - pKI ,, 2 X: S~[(-- Ul'~v2-}--~("r-I- ~-~1 7 1 " ) T 1  ] 

+ T---~-%2 k 7 p  (13) 

where 

with 

and 

p2 = (9p2 _ 20) (14) 

1 [ . ,  1 0 =  8~ 7 812-- ~('gll ÷812) (15) 

R5 
p = - - -  1 (16) RTI 

Ri*i is the 'hard-core radius' of a segment of type i. Express- 
ing this via the vi yields 

( V ~  1/3 

p = \v,1 j -- 1 (17) 

Hence, for v~ = v;, p vanishes. The quantities r and 7r are 
defined by 

_ r = l - ~ a n d - T r = l  p, (18) 
2 

respectively. It can already be seen from equation (13), that 
the parameter P and hence the ratio v~lv; has an influence on 
X. 

6 is defined as 

822 
6 = - 7 - -  1 (19) 

811 

01 and Cpl are the reduced internal energy and heat capa- 
city of component 1 respectively. For the Prigogine theory 
they are given by 

1 [1.011 2.409] 
o,= T,, j (20) 
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and 

3(~ 1/3 - 2 - 1 / 6 )  3(~ 1/3 - 2 - 1 / 6 ) 2  

4.818 8.088 ~_] / [2.409 2.022 ]2 
+ / L  ~4 ~-PV 

(21) 
c~ 1 and K 1 are thermal coefficient of expansion and com- 
pressibility of component 1. The first term on the r.h.s, of 
equation (13) represents the interactional part Xi of X, 
whereas the second and third term represent the free 
volume contributions Xf. Usually, when equation (13) is 
applied, the segmental hard-core volumes of both com- 
ponents are set equal, and it is used in connection with the 
EOS theory of Flory et al. It can be seen, that for P = 0 the 
expression equation (13) simplifies considerably. Moreover, 
in that case 20 ---- -XI2]P~, where X12 is the exchange energy 
parameter of Flory's theory 16. This is the form of the Pat- 
terson theory which is usually applied. 

Determination of the reduction parameters 
We showed before that by calculating reduction para- 

meters from the experimental coefficient of thermal 
expansion c~, the compressibility r and the specific volume 
at p = 0, the results of different EOS theories are 
comparable I l l 3 .  When these parameters are determined 
by fitting the EOS to PVT data the results obtained by the 
different theories are not so similar. Therefore, in the 
present work we will also calculate them. 

How to calculate them for Prigogine theory is outlined in 
Ref. ~7. There, the determination of the reduction para- 
meters was actually performed for the modified cell model. 
By setting the quantity of that theory which was introduced 
to decouple the free volume term from the geometry 
(usually called q) to unity, however, the corresponding 
equations for the Prigogine theory are obtained. For SS 
theory it can be accomplished in the following way: 

c~ and K are given by 

arT= ~[  A2A6-A3AS] 
LA~A5 _ AzA4J (22) 

and 

P-[ AsA7 1 (23) 
rp = ~ LA1A 5 _ A2Aaj 

respectively. The A i appearing in equations (22) and (23) are 
given in the appendix. ~ and T can be determined by solving 
simultaneously the EOS and the equation for c~ at p = 0. y is 
determined from the equilibrium condition. From this V~p 
and T* can be calculated. From equations (22) and (23) 
the following expression for p* is derived 

p = ~ T[A2A6-A3AsJ  (24) 

As discussed above, when determining the SS reduction 
parameters the question arises how to fix v* or equivalently 
the quantity 3cir. Nies and Stroeks 1s'19 have performed fits 
of the SS-EOS to PVT data, where they set a chain segment 
equal to a monomer unit. It is not surprising that the reduc- 
tion parameters differ from those obtained with the con- 
dition 3clr = 1 zo. Calculating, however, the number of 
degrees of freedom 3c per polymer chain from these dif- 
ferent parameters, it is found that the results also differ. 

c calculated from the parameters where a chain segment is 
equal to a monomer unit is greater than that calculated from 
the parameters determined by the condition 3c/r = 1. This 
means that the prediction of the theory concerning the flexi- 
bility of polymer chains depends on the choice of the size of 
a polymer segment. 

In the present work, the reduction parameters were 
calculated by first setting 3c/r = 1. From equation (5), it is 
obvious, that the segment size is fixed after fixing the ratio c/ 
r. This segment size is usually much smaller than the 
monomeric unit. From equation (5), however, the number of 
degrees of freedom of an arbitrarily chosen part of the chain, 
for example a monomer unit, can be calculated. This value 
can then be inserted into the equilibrium condition, and the 
reduction parameters can be recalculated. From these new 
parameters c/r is calculated once more, and again inserted 
into equation (8). This is repeated until consistency is 
achieved, i.e. the value of c/r calculated from the reduction 
parameters is equal to the one previously inserted into the 
equilibrium condition. In general, this procedure converges 
after about 5 -6  iterations. 

EXPERIMENTAL 

For our discussions we will perform model calculations on 
two binary polymer systems which were already described 
before by using other EOS theories ~1-13. One of the systems 
is polystyrene (Mn = 2100gmole  -1, Mw/Mn = 1.08) 
combined with polyisoprene (Mn = 2600 g mole -I, Mw/ 
Mn = 1.08) (PS 2.1/PI 2.6), the other system is polystyrene 
( M  n = 230000 g mole -l, Mw/Ma = 1.11) with poly(cyclo- 
hexyl methacrylate) (Mn = l l 4 0 0 0 g m o l e  -1, Mw/M, = 
1.26) (PS 230/PCHMA 114). PS 2.1/PI 2.6 exhibits UCST 
behaviour with a critical temperature of about 115°C, and 
PS 230/PCHMA 114 is an LCST system whose critical 
temperature is about 240°C. The corresponding experi- 
mental phase diagrams can be found in Ref. 10. Expansion 
coefficients, compressibilities and specific volumes were 
determined from PVT measurements. 

RESULTS 

Reduction parameters 
Since reduction parameters generally turn out to depend 

almost linearly on temperature, they have to be averaged 
suitably. This is done over the temperature range where both 
components of a blend are well above their glass transition. 
For PS/PI this corresponds to calculating the parameters at a 
temperature of 125°C, for PS/PCHMA it is 200°C1°. 

The reduction parameters obtained for Prigogine theory 
are shown in Table 1. For SS theory the calculations were 
performed for four different sizes of segments. First, with 
the condition 3c/r = 1, then by setting v equal to the hard- 
core volume of a monomer unit, and by fixing the segmental 

3 I 3 I hard-core volume to 60 c m  mole-  and 100 cm mole-  
respectively. 

Table 2 shows the results of these calculations. It can be 

Table l Reduction parameters of Prigogine theory for the polymers used 

Polymer p* (MPa) v~ (cm 3 g-i)  T* (K) 

PS 2. ! 627.1 0.8825 4042 
PI 2.6 506.6 1.0205 3853 
PS 230 590.4 0.9055 4846 
PCHMA 114 558.4 0.8453 4647 
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Table  2 Reduction parameters of SS theory for the polymers used, obtained by different choices for 3c/r 

Way of fixing 3c/r p* (MPa) V~p (cm 3 g - i )  T* (K) V~ (cm 3 mole -I)  Vm (cm 3 mole - t )  c/d 

PS 2.1 
3c/r = 1 753.5 0.9361 10345 38.06 97.35 0.8489 
r = d 755.3 0.9245 8351 96.15 96.15 1.0457 
V~ = 60 cm 3 mole -~ 753.5 0.9296 9100 60 96.68 0.9626 
V~ = 100 cm 3 mole i 755.3 0.9233 8308 100 96.02 1.0498 
PI 2.6 
3c/r = 1 614.5 1.0789 9695 43.73 73.37 0.5592 
r = d 617.1 1.0696 8373 72.73 72.73 0.6446 
V~ = 60 cm 3 mole -I 615.5 1.073 8790 60 72.96 0.6147 
V~ = 100 cm 3 mole -I 618.6 1.0654 7906 100 72.45 0.6859 
PS 230 
3c/r = 1 708.2 0.9608 12426 48.64 99.92 0.6852 
r = d 709.9 0.9501 10292 98.81 98.81 0.8196 
V~ = 60 cm 3 mole ~ 708.8 0.9564 11515 60 99.46 0.7362 
V~ = 100 cm 3 mole ~ 709.9 0.9500 10272 100 98.80 0.8211 
PCHMA 114 
3c/r = 1 675.2 0.8949 11757 48.26 150.34 1.0383 
r = d 680.7 0.8811 9196 148.02 148.02 1.3177 
V~ = 60 cm 3 mole -I 676.7 0.8908 10878 60 149.65 1.1195 
V~ = 100 cm 3 mole -~ 679.3 0.8842 9685 100 148.55 1.2529 

200 

160 

120 

~ 80 

40 

0 t 

1.05 1.10 1.15 1.20 

Spec. Vol. [cm3/g] 

Figu re  1 Pressure versus specific volume for PI 2.6. The dots represent 
experimental  values, the lines are calculated with the different sets of the 
reduction parameters for SS theory. It can be seen that all the four lines 
practically coincide. 

seen that the numerical values of the reduction parameters 
differ appreciably for the different segment sizes. Forp* and 
Vsp the changes are not as large as for T*. 

Figure I shows pressure versus specific volume of PI 2.6 
at 125°C. The dots are experimental, and the lines give the 
theoretical values of SS theory calculated for all four sets of 
reduction parameters. It can be seen that the four curves 
practically coincide. Moreover, calculations show that also 
volume versus temperature and occupied site fraction y as a 
function of pressure and temperature are basically equal. 

Table 2 also contains V~, the molar volume of the chain 
segments and Vm, the corresponding molar volume of the 
monomeric unit. The latter seems to be almost independent 
of the size of v*. Taking into account the fact that the 
occupied site fraction is also independent of the size of v ,  
this means that the free volume predicted by the theory does 
not depend on the choice of v*. 

In order to directly compare the predicted number of 
degrees of freedom, we calculate the quantity c/d (d = 
degree of polymerisation), the number of degrees of 
freedom per monomeric unit. It is given in the last column 
of Table 2. It can be seen that the larger the segment size is 
chosen, the higher is the prediction for c/d, i.e. a greater 

chain flexibility is predicted. It can also be seen that the 
chains of the low molecular weight PS are predicted to be 
more flexible than those of the high molecular weight PS. 
This is partially due to the different expansion coefficients, 
but also due to the fact that the reduction parameters are 
temperature dependent. This in turn implies, that c is 
temperature dependent as well. It turns out that c decreases 
with increasing temperature. Since the reduction parameters 
for PS 2.1 were evaluated at a lower temperature than those 
for PS 230 a higher value for c is expected. 

Phase behaviour 

To describe the phase behaviour of polymer blends, in 
addition, to, the pure component parameters, the quantities 
e]2 and Vl2 are required. Vl2 is usually taken as the average 

V;2 = [(V; 1/3 + V~1/3)]2] 3 (25) 

of the pure components. Following Sanchez and Lacombe 6, 
for e ]2 we will use the Berthelot relationship and introduce a 
parameter ~" as a measure of deviation from this relationship. 
Thus 

* ,.. * * . i /2  
e l 2  = ~ [Gl lG22)  (26) 

~" is then determined by adjusting it in such a way that the 
calculated and the experimental critical temperatures in 
phase diagrams are equal. Usually ~" does not deviate too 
much from unity, and the larger ~', the more favourable it is 
for miscibility• 

To discuss the influence of different sizes of the lattice 
sites for the two components, we use the parameter p 
(equation (16)) introduced by Patterson. 

Figure 2a shows spinodals calculated by the Prigogine 
theory for the system PS/PI. The dashed curve is the result 
obtained when setting V l = v2 and ~" = 1.00158. When the vi 
are set equal to their respective values of the monomeric 
units (ri = di, this corresponds to p = - 0.09) and ~'does not 
differ too much from unity complete immiscibility is 
predicted. Upon increasing ~', miscibility on the PS-rich 
side of the phase diagram is predicted, but not however for 
high PI contents. Even for ~" = 2, which is a very large value, 
on the PI-rich side still almost complete immiscibility is 
predicted. This is shown as a dotted line in Figure 2a. For 
the sake of comparison with SS theory, we also include the 
phase diagram which is calculated with vi values that are 
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Figure 2 Spinodals of PS 2.1/PI 2.6 calculated for different choices of 
lattice site sizes: (a) Prigogine theory, (b) SS theory. 

determined by fixing 3c/r = 1 (corresponding to p = 
0.0567). It was calculated with ~" = 1.0785 and is shown as a 
solid line in Figure 2a. It is very small and completely 
asymmetric, in contrast to experiment. The only reasonable 
phase diagram is predicted for the case when the segmental 
hard-core volume is chosen equal for both components. 

The corresponding curves obtained by SS theory are 
shown in Figure 2b. As mentioned above, even for the case 
of  v~ = v~ the free energy of  mixing depends on the size of  
the v~ values. Therefore, the spinodals were calculated for a 
molar hard-core segment volume V~ of  60 cm 3 mole -l and 
100cm 3 mole -l respectively. It turns out that these two 
curves are basically identical. However, different values of  ~" 
were required to obtain these diagrams. For V: = 
60 cm 3 mole -l and V~ = 100 cm 3 mole -=, ~" = 1.001997 
and ~" = 1.00182 respectively were used. It should also be 
kept in mind that the reduction parameters of  SS theory 
depend on the chosen size of  v~. So for both curves different 
reduction parameters were used, therefore the similarity of  
the curves seems surprising. The curves obtained are shown 
as medium and long dashes for the case of  Vs* = 

3 1 * 60 cm mole -  and Vs = 100 cm 3 mole -~ respectively. 
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Figure 3 Pressure dependence of the critical temperature of PS 2.1/PI 2.6 
calculated for different choices of lattice site sizes: (a) Prigogine theory, 
(b) SS theory. 

The curve obtained by setting the segment size equal to a 
monomer unit (corresponding to p = - 0.0889) is shown as 
dotted line. As for the Prigogine theory, it is not possible to 
obtain a phase diagram whose critical temperature equals 
the experimental one. Rather, immiscibility is predicted for 
~" not too different from unity, and for large ~" only on the PI- 
rich side immiscibility results. The curve in Figure 2b was 
calculated with ~" = 2. Finally, the spinodal obtained by 
using the reduction parameters calculated with the condition 
3c/r = 1 (corresponding to p = 0.0474) is shown as a solid 
line. It was calculated with a value of  ~" = 1.0212. 

Figure 3a and 3b finally show the predicted pressure 
dependence of  the critical temperature for the different 
cases for Prigogine and SS theory respectively. It can be 
seen that for both theories in the case of  fixing the segment 
size by setting 3c/r = 1, a monotonic increase of  the critical 
temperature is predicted. For the case of v~ -- v2 both 
theories first predict a decrease of  critical temperature with 
pressure, but on further pressure increase the critical 
temperature increases as well. 

The spinodals calculated for PS/PCHMA using the 
Prigogine theory are shown in Figure 4a. Again, the 
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dashed curve gives the result when setting v~ = v~. This 
curve was obtained by using a value of  ~" = 1.000485. As for 
the system PS/PI, it is not possible to describe the 
experimental phase behaviour when the segmental hard- 
core volumes are set equal to the monomer hard-core 
volumes (corresponding to p = 0.1466). The phase diagram 
obtained using a value of  ~" = 1.5 is shown as a dotted line. 

Finally, fixing the hard-core volumes by the condition 3c/ 
r = 1 yields the solid curve in Figure 4a. It was calculated 
with ~" = 1.0004589. For this system, the hard-core volumes 
obtained from the condition 3c/r = 1 are very similar (p = 
0.0046). Therefore, the phase diagrams and the correspond- 
ing ~" obtained from this condition and from vl = v2 are 
similar as well. 

The spinodal curves obtained for this system using SS 
theory are shown in Figure 4b. Again, the calculations for 
the case of  equal hard-core volume was performed for V~ = 
60 cm 3 mole-]  and V, = 100 cm 3 mole-] .  In this case, 
however, the results differ slightly. For V~ = 60 cm 3 mole -I 
the corresponding curve is shown as short dashes (using ~" = 
1.0004294), for V~ = 100 cm 3 mole -1 it is shown as long 
dashes (using ~" = 1.000422). The curve obtained from 

900 

800 

700 

600 

b 
1 - -  

50O 

4O0 

(a) 

300 

200 

- -  3c/r=1 

I I I i I i 

0 20 40 60 80 1 O0 120 

Pressure [MPa] 

140 

800 

700 

600 

5" 
~-~ 500 

400 

300 

200 

3c/r=1 

- - -  V, "=lOOcm3/m°le / 

_ _  V.=6Ocm3/mole / // 

- - -  rood. SS / // 

/111 

/ / / / /  
/ / Y  

I I I I ~ I 

0 10 20 30 40 50 60 70 

(b) Pressure [MPa] 

Figure 5 Pressure dependence of the critical temperature of PS 230/ 
PCHMA 114 calculated for different choices of lattice site sizes: (a) 
Prigogine theory, (b) SS theory. 

setting a segment equal to a monomer unit is shown as 
dotted line (p = 0.1442, ~" = 1.5), that obtained by using the 
3c/r = 1 parameter as solid lines (p = -0 .0026,  ~" = 
1.000599). Again, it should be kept in mind, that for 
different segment sizes different reduction parameters 
result. 

In Figure 5a and 5b, the pressure dependence of the 
critical temperature is shown for Prigogine and SS theory 
respectively. Prigogine theory predicts almost the same 
pressure dependence for both cases. For higher pressures, 
the critical temperature Tcr tends to infinity, which means 
that from a certain pressure complete miscibility is 
predicted. For the case of  3c/r = 1, the increase of Tcr at 
higher pressures is slightly faster; however, the difference is 
very small. For SS theory similar tendencies are predicted, 
the difference between the different cases is much bigger 
however. Even for the cases of  V~ = 60 cm 3 mole -j and 
V~ ---- 100 cm 3 mole -~ the curves differ. 

Recently, we have found that a modification of  the SS 
theory 13 gives results which are qualitatively similar to 
those of  other EOS theories, i.e. the theories of Patterson 

POLYMER Volume 39 Number 4 1998 879 



Lattice site size and thermodynamic properties of polymers: B. Rudolf e ta  I. 

et al., Sanchez and Lacombe and Dee and Walsh. A 
difference between the SS theory and the other investigated 
theories is the mixing rule for e* and v*. SS theory uses 
equation (1), whereas the other theories use a simpler 
mixing rule which is derived from equation (1) under the 
assumption that the vii and Vl2 are equal. Upon introduction 
of this simplified mixing rule into the SS theory, similar 
predictions are obtained as from the other theories. For these 
investigations reduction parameters were used which were 
determined with the condition 3c/r = 1, hence the functional 
relationship between the reduced variables of state was the 
same for all components. 

Now, it turns out that the results of the original SS theory 
are similar to those of this modified SS theory when the 
segmental hard-core volumes of both components are equal 
or similar. This is not only true for the case when the 
reduction parameters, and hence the vi, were determined by 
the condition 3c/r = 1, as is the case for PS/PCHMA. For 
this system, the corresponding segmental hard-core volumes 
determined by this condition are very similar for both 
components, therefore, the similar description of the phase 
diagrams might be expected. It is, however, also true when 
the v~ of the components determined by the condition 3c/r = 
1 differ appreciably as for PS/PI. By setting v~ equal for both 
components in the original SS theory, similar results are 
obtained as for the modified SS theory. The reduction 
parameters, however, differ for the two cases, so the 
similarities in the predicted behaviour seem surprising. 

The results obtained with this modified SS theory are 
shown in Figure 2b and 4b as short dashes. 

Comparing the results obtained from Prigogine theory 
and those of SS theory, it is again found that they are - -  at 
least qualitatively - -  very similar. For both theories the 
results obtained depend strongly on the chosen value of p. 

Also other thermodynamic quantities are dependent on p. 
Figure 6 for example shows the excess volume for a PS/PI 
50/50 (wt.%) mixture at p = 0 as a function of p. It was 
calculated by using ~" = 1.00158 (determined for p = 0) and 
keeping it constant, varying only p. In the vicinity of 
vanishing and small positive p, the excess volume is 
negative, outside of this region it is positive and increases 
strongly with increasing magnitude of p. This curve was 

calculated with the Prigogine theory; however, SS theory 
yields qualitatively similar results, the magnitude of the 
predicted excess volume being larger. 

Another example is shown in Figure 7, the energy of 
mixing AE for the same blend (the last three terms of the 
free energy of mixing equations (9) and (12) respectively) as 
a function of p. The solid curve is calculated with Prigogine 
theory, using the ~" value corresponding to p -- 0. The dots 
are calculated from SS theo,ry also using the ~" value 
corresponding to p = 0 (with Vs = 100 cm 3 mole-l),  but the 
reduction parameters corresponding to that of p. 

,For p = 0, the results obtained by using the parameters for 
V~ = 60 cm 3 mole -l  and those for V~ = 100 cm 3 mole -1 
(also using the corresponding ~') differ only by about 2% in 
spite of the fact that the parameters differ appreciably. 

It should be pointed out that using different values for ~" 
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(as long as ~" does not differ too much from 1) does not alter 
the shape of the curve very much. The change in AE is 
mainly due to changes in P. This increase in hE  with 
increasing magnitude of O is the reason for the predicted 
immiscibility in that range of p. This, in turn, is a 
consequence of the mixing rule equation (1). Figure 8 
shows the quantity - qzs as a function of 02 for different 
values of p. In the vicinity of p ~ 0 this quantity has its 
lowest values, whereas for other values of p it is much 
higher. For positive P the maximum difference to the P = 0 
curve lies more on the • i-rich side, whereas for negative p it 
lies more on the cI,2-rich side. Since ~i, Yi and the qizeT of the 
pure components are (almost) independent of the chosen 
lattice site size, this difference between the values of qze 
for p = 0 and the values for p different from 0 is the reason 
for the predicted form of the h E  versus P curves. Moreover, 
the position of the maximum difference in Figure 8 
accounts for the above found symmetry of the phase 
diagrams. It should be noted, that these results were 
obtained by only using equation (1). So, this mixing rule 
together with the chosen value of p governs the predicted 
miscibility behaviour of the theories. 

A physical reason for this unusual behaviour might be a 
'surface area effect' similar to that introduced by Sanchez 
and Lacombe 6. The number of interactions per mer in the 
pure state and in the mixed state differ if the lattice site 
volumes of the components differ. Therefore, the energy of 
the mixed system might be very different from the sum of 
the energy of the pure components, thus leading to large 
excess energies. 

Influence o f  p on the X parameter 

Now we want to see the influence ofp on the X parameter. 
The interactional part Xi (cf. equation (13)) is also shown in 
Figure 7 as a dotted curve. It can be seen that it is quite 
similar to the AE curve. As one can directly see from 
equation (13), the first free volume term does not depend on 
p. At vanishing pressure, the second free volume term also 
vanishes. At higher pressures, however, its magnitude can 
be larger than that of the first free volume term. The phase 
diagrams calculated with Patterson theory using this X 
parameter does not have the same symmetry as the 
corresponding Prigogine phase diagram. This is because 
this X parameter is not concentration dependent, therefore 
the symmetry is mainly governed by the chain lengths of the 
components as in the Flory-Huggins theory. 

DISCUSSION 

Results of SS and Prigogine and other EOS theories are 
usually found to be not only quantitatively different, but also 
qualitatively. These differences however are not intrinsic 
due to the different nature of the theories, but only due to 
different choices of the lattice site sizes that are usually 
made. Simha et al. fix the lattice site of the pure components 
by setting 3c/r = 1, Nies and Stroeks use a monomeric unit, 
whereas in the other theories the size is simply chosen to be 
equal for both components. However, neither the condition 
3c/r = 1 nor v~ = v~ is made on a physical basis. They are 
only made for convenience, to simplify the calculations. 
There is no physical justification for either of these choices. 

It turns out, however, that the properties of the theories 
depend very strongly on these choices. From the calcula- 
tions presented above, it must be concluded that for a value 
of p which is too different from zero, it is generally not 
possible to get a reasonable description of phase behaviour. 

Thus, as long as there are no physically justified criteria for 
choosing the size of the lattice sites, it seems most 
reasonable to choose vl = v2 and then calculate the average 
interaction energy. It would, however, be desirable to have a 
theory where no such lattice site size has to be fixed. 

It seems likely that all the cell model theories and also the 
lattice fluid theory give similar thermodynamic predictions 
not only when the v~ of the two components are equal, but 
also generally when the same mixing rule is applied. As 
shown above, this mixing rule can appreciably change the 
concentration dependence of qze*, and this can dominate the 
predicted behaviour of the system. If the same mixing rule is 
applied for all theories, this concentration dependence is the 
same. Also, the free volume terms are similar for all cell 
model theories, and even the corresponding term of SL 
theory can be cast into a form 21 which is similar to that of 
the Patterson theory. The latter stems from a series 
expansion of the cell model theories. Moreover, the 
magnitude of the contribution due to the combinatorial 
entropy of 'mixing' holes and segments in SS theory is 
usually very small and does not influence the behaviour so 
much. 

Therefore, since the energetical and the free volume 
terms are so similar, it can now be understood why theories 
which at first sight seem completely different predict, in 
fact, very similar thermodynamic behaviour, as long as the 
same mixing rule applies. 

It should be noted that the introduction of different 
potentials yields different mixing rules, so that for vl :# v2 
indeed, different theories can yield different results. 

In SL theory the lattice site size of the pure components is 
fixed. However, a mixing rule is applied so that in the 
mixture both components' lattice sites have equal size. This 
is done before the average interaction energy between the 
chain segments is calculated. This means that for the latter 
also the simplified mixing rule applies. For this theory it is 
not possible, however, to introduce a potential. But in 
principle one could also introduce a different mixing rule for 
the v~, so that the theory would give different predictions. 

For SS theory, one might expect different results for 
different choices of vi, since the reduction parameters are 
different in that case. However, the terms that are important 
contain only quantities like ~ and y, which have been shown 
to be independent of Vg. 

CONCLUSIONS 

Using different theories, it has already been shown before 
that they give qualitatively similar results when the vi are 
set equal for both components so that the simplified mixing 
rule applies. Now we have shown that also for the more 
general case of vl ~ v2 the predictions of the theories are 
very similar. For a given mixing rule, p seems to be the key 
variable that fixes the properties of the theory. However, so 
far there seems to be no way of fixing this quantity on a 
physical basis. It is mainly chosen for convenience to 
simplify the equations. This might be one of the key 
problems to find EOS theories which give a more 
appropriate description of ex eriment. Perhaps, if a 
physically justified way to fix v;Pcould be found, the poor 
predictive power of the theories could be improved. As seen 
above, this choice influences the predictions of thermo- 
dynamic properties like energy of the system, excess 
volumes, symmetry of phase diagrams etc. When 0 is too 
different from 0 it can completely dominate the predicted 
phase behaviour. Usually, when fixing the v7 it is not 
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thought about how this influences these thermodynamic 
properties, although it was already clear from the expression 
equation (13) for the X parameter that X (and hence AF) 
depends on p. 

Another problem with these theories is the accuracy of 
the determination of the reduction parameters. The 
predicted phase diagram depends very sensitively on 
them. This, however, is no principal problem. 

ACKNOWLEDGEMENTS 

BR thanks the Japan Society for the Promotion of Science 
for supporting his stay at TIT and the Humboldt Foundation 
for kind help. 

A5=~cc - I n ( l - y )  y(1- y) +6T(y~) 2 

9.099 2 2-1/6(y~)- 1/3 
67"(y'~) 4 3 (1 - 2 - 1/6y(y~) - 1/3) 

2 -  l/6y(y~) - 1/3 _ 1/3 [2 1/3]  

7 ~'71/-'gT-'(y- ~ --1/.~ [~2- J 
l / 6 ( ~ y )  - 

A 6 -  1 [2.409- 3.033] 
67"Z(yg) 2 [ -(~-TJ 

A7= = 
T 

APPENDIX A: 

The quantities Ai appearing in equations (22) and (23) are 
given as follows: 

A1 = ~q_ 1 2-1/6y2/3~-4/3 
T 3 (1 - 2 -  l/6y(yg) - 1/3)2 

8 .088y  2 4 .818y  2 ~ - - -  
~(y~)5 ] '(y~)3 

6.066 2.409 2 2- 1/6(y ,~)  - 1/3 
A2 - ~ - ( y ~ ) 4  ] - ( y , ~ ) 2  3 (1 - 2-1/6y(y~)- 1 /3 )2  

2y  r l . O l l _  1.2045] /5,~ A3 ~,2(y~) 2 [ (y~)2 j ~ -  

2.409y 2 2.022y 2 1 2 - 1/6y2/3 ~ - 4/3 

A4 = 3~'(y~)3 ~'(y~)5 + 3 (1 - 2 - l/6y(y~) - 1/3) 

2 -  1/6y(y~)- 1/3 __ 1/3 
-'}- "~711- '~ -~ ' -~ )~1 /~2[~2-116y  2/3~-4/3] 

REFERENCES 
1. Eyfing, H. and Hirschfelder, J. O., J. Phys. Chem., 1937, 41, 249. 
2. Flory, P. J., Orwoll, R. A. and Vrij, A., J. Am. Chem. Soc.,1964, 86, 

3507. 
3. Dee, G. T. and Walsh, D. J., Macromolecules, 1988, 21, 811. 
4. Dee, G. T. and Walsh, D. J., Macromolecules, 1988, 21, 815. 
5. Sanchez, I. C. and Lacombe, R. H., J. Phys. Chem., 1976, 80 ,  2352. 
6. Lacombe, R. H. and Sanchez, L C., J. Phys. Chem., 1976, 80 ,  2568. 
7. Prigogine, I. The Molecular Theory of Solutions. North-Holland, 

Amsterdam, 1959. 
8. Simha, R. and Somcynsky, T., Macromolecules, 1969, 2, 341. 
9. Jain, R. K. and Simha, R., Macromolecules, 1980, 13, 1501. 

10. Jain, R. K. and Simha, R., Macromolecules, 1984, 17, 2663. 
11. Rudolf, B. and Cantow, H.-J., Macromolecules, 1995, 28, 6586. 
12. Rudolf, B. and Cantow, H.-J., Macromolecules, 1995, 28, 6595. 
13. Rudolf, B., Ougizawa, T. and Inoue, T., Macromol, Theort Simul., 

in press. 
14. Patterson, D., J. Polym. Sci., Part C, 1968, 16, 3379. 
15. Patterson, D. and Delmas, G., Trans. Faraday Soc., 1969, 65, 708. 
16. Flory, P. J., J. Am. Chem. Soc., 1965, 87, 1833. 
17. Rudolf, B., Kressler, J., Shimomai, K., Ougizawa, T. and Inoue, T., 

Acta Polym., 1995, 46, 312. 
18. Nies, E. and Stroeks, A., Macromolecules, 1990, 23, 4088. 
19. Nies, E. and Stroeks, A., Macromolecules, 1990, 23, 4092. 
20. Olabisi, O. and Simha, R., Macromolecules, 1975, 8, 211. 
21. Rudolf, B., Polymer, 1996, 37, 825. 

882 POLYMER Volume 39 Number 4 1998 


